MOOL: an Object-Oriented Language with Generics
and Modules

Maria Lucia Barron Estrada' , Ramén Zatarain Cabada’', and Ryan Stansifer

'Instituto Tecnolégico de Culiacin, Av. Juan de Dios Bitiz s/n, Col. Guadalupe, Culiacin,
Sin. CP 80220 M¢xico
mbarron-a fit.edu
ZFlorida Institute of Technology, 150 W. University Blvd. Melboumne, FL. 30901 USA
van‘ cs.fit.edu

Abstract. Though most developers are concerned with only a few languages,
programming lanpuages continue to evolve. Rescarchers continue to develop
new features and experiment with new combinations of features in order to de-
sign languages that arc casier 1o program in. In this paper we describe the pro-
gramming language called MOOL (Modular Object-Oriented language).
MOOL is a simple class-based object-oricnted language that supports peneric
programming by parameclerized classes and interfaces [4]. It contains an inde-
pendent module mechanism to allow the development of large programs in a
safc manner. It is this combination of features that differentiates MOOL from
C++, C#, and Java. A prototype compiler is under development that will trans-
late MOOL to both the MSIL for .NET platform and bytecode for Java.

1 Introduction

There are many language features that programmers expect to find in modern pro-
gramming languages. Every programming language provides some of them, usually in

different combinations and variations. It is important to begin with a rough list of
these features.

*Control constructs

*Concurrency

*Input/output

*Aggregation for structuring large programs
*Generics/templates for convenient code-reuse
*Inheritance for convenient code-reuse

We are not concemed with the first three in this paper. Rather we focus on the last
three. Our Goal is to design an imperative, type-safe, class-based language with ag-
gregation, generics, and inheritance. We want a language that is as simple and natural
as possible.

We look at several of the major languages and how they approach aggregation, ge-
nerics, and inheritance. ‘

Ada [1) and SML [8] both have a well-defined module mechanism. Both support
generic programming. Support for inheritance was added later to Ada.

472 Maria L. Barron Estrada, et al.

Java (3] supports inheritance and classes and it is planned to add support for geper.
ics programming. The situation for C# [2] is similar.

Both Java and C# relegate aggregation to a minor role.

Only Modula-3 [9] was designed with all three (aggregation, generics, and inheri.
tance) in mind from the beginning.

With respect to our goal all these language fall short.

Ada and Modula-3 are deficient (from our point of view) because objects/classes
are subordinate.

SML is inspirational in many ways, in particular with universal polymorphism type
reconstruction, and modules, but it is not a traditional, imperative language. And it
does not have classes, though its cousin OCAML [10] does.

In Java, C#, C++ [11] modules play a reduced role. In these languages the class
construct is overburdened.

Classes play many roles in languages that do no support another mechanism to
structure programs [12]. The separation of classes and modules in two distinct ele-
ments allows using them independently; it also permits to use them to generate appli-
cations without forcing the developer to use a specific paradigm. However, separate
classes en modules in two distinct constructs is not an easy task. Some language de-
signers have accomplish this task but not without sacrificing other elements, i.c.
MOBY [7] and OCAML [10]. These two languages are descendents of SML and they
incorporate classes into the language carrying on all the elements previously defined
in it.

The absence of parametric polymorphism in object-oriented languages like Java
and C# has annoyed developers to some extent that both languages are in the process
to get a mechanism to support parametric polymorphism. MOOL allows the definition
of parameterized classes, class interfaces, methods and functions. Parameterized types
and functions allow developers to abstract over types. This will enhance code reuse in
a safe manner.

MOOL provides different constructs for classes and modules. Modules are contain-
ers, which are used to generate programs or code fragments. Classes on the other
hand, are useful to create programs using the object-oriented style. Thus both impera-
tive and object-oriented programs can be design without forcing the developer to use

any style. A complete definition of the language can be found at [4]. The grammar of
MOOL is presented in BNF notation as an appendix in {4].

2 MOOL

MOOL - Modular Object-Oriented Language - is a simple, general-purpose, stati-
cally typed, class-based, object-oriented programming language. It provides a module
construct with interface and implementation separated to create large programs,
class construct to define and generate objetts, and supports the definition of generic
code using parameterized types.

. MOOL provides two kinds of universal polymorphism. Parametric polymorphism
is supported with parameterized types and type variables. Subtype polymorphism i

MOOL: an Object-Oriented Language with Generics and Modules 473

provided to be able to use an object of a subtype where an object of its supertype is
expcclcd.

There is only one kind of type in MOOL.: reference types. There is a hicrarchy of
types defined with object at the top. Everything is a reference to an object of certain
type. Automatic boxing and unboxing is provided to use the values contained in cer-
tain objects.

MOOL includes classes, inheritance, polymorphism, dynamic dispatch, and late
binding to support the object-oriented programming style. It also includes functions to
create procedural programs that do not require the use of objects.

2.1 Definitions

Program. A MOOL program is a set of compilation units. A compilation unit is either
a module interface or a module implementation. A program specifies a sequence of
statements to be executed in some order.

Identifiers. Identifiers are names used to define and refer to some elements in a pro-
gram such as variables, functions, types, etc.

Expression. An expression is a construct in the language in which a combination of
operators and operands specify a computation that produces a value.

Predefined types hold numeric or boolean values. They are integer, float, and boo-
lean. There is also a special reference value called null. The user can create other
reference types using classes, class interfaces, functions and arrays.

2.2 Module Interface and Implementation

A module is the basic unit to create a simple program or to create a code fragment
that can be combined with other modules to create larger programs. Functions, classes
and class interfaces are part of modules and cannot be defined independently.

Modules are static units to encapsulate elements, hide information and separate
compilation. Modules contain two parts: a module interface that describes the signa-
ture of the module and the module implementation that contains the implementation
of the signature. Modules define the namespace structure to refer to qualified names.
They define two scopes: internal and external.

In this section we present the two parts of the module construct.

Module Interface

A module interface is a specification of the services a given module provides to
others. A module interfaces reveals the public parts of a module. Information hiding
can be achieved by restricting the interface to contain only a subset of the elements
defined in the module implementation. By default all members of a module interface
are public.

The language contains a module interface called /Main, which contains the main
function. The main function receives an array of string elements and its result is void.

474 Maria L. Barrén Estrada, et al.

Any module may implement /Main providing code for the main function. The mqjy,
function is the point where the program starts execution.

Example of the module interface /Main containing the definition of the main function.

module interface IMain (
void main (String (] args);
}

Module Implementation

A module implementation contains the definition of all the elements shown in the
module interface as well as some other elements that are only visible inside the mod-
ule. A module implementation can contain constants, variables, types (functions,
classes, and interfaces) and an initialization part (init Block), which is used to initial.
ize the elements of the module before they are loaded to execution.

The elements declared inside a module are valid in the scope they are declared. All
elements listed in the module interface are public elements unless they are annotated

as protected. The module exports the interfaces listed in the Modulelnterfaces pan. A
module implementation has the form:

module Identifier Modulelnterfaces ModuleBlock

Example of of a module implementing the /Main module interface.

module Hello implements IMain (
import System;
void main (String [] args) {
I0.printLine(‘'‘Hello world!’’);
)

}

Scope

Modules define two scopes; internal and external. The combination of modules and
classes provides control over class members’ visibility. Listing a class interface in a
module interface allows hiding some members of the class in the module implementa-
tion. A class declared in the module interface can annotate its members as protected.
By default, all members are public. The combination of members that are listed or not
listed in the module interface gave us several views of them in different scopes.

Example of a modulc interface and its implementation defining different views of elements.
module interface IM1- {
class interface ICl
void mi();
protected void m2();

)

class Cl extends object implements IC1({

MOOL: an Object-Oriented Language with Generics and Modules 475

constructors
C1();
)
}
module M1 implements IM1 (
class C1 ({
fields
constructors C
cr () { .}
methods
void m1i (..}
void m2 (..}
void m3 (.}
}

// other elements of module M1l

}

The module interface /M| contains two declarations, a class interface and a class. In
the class interface /C/ two methods with different access (public and a protected) are
declared. The module implementation M/ contains the complete definition of class
Cl. Class C/ contains three methods, but only two of them were listed in the class
interface /C/ in module interface /M/. All members of a class are visible inside the
module and they are available for objects and derived classes. A protected member of
the class listed in the class interface is visible outside the module only for derived
classes.

The example above contains a definition of class C/ with three methods: m/, m2,
and m3. Tables 1 and 2 show how these members are available for users and derived
classes inside and outside the module implementation.

Table 1. Visibility of mcthods of class C1 inside the module implementation

Derived classes Users
Member ml visible visible
Member m2 visible visible
Member m3 visible visible

Table 2. Visibility of methods of class Cl outside the module implementation

Derived classes Users
Member ml visible visible
Member m2 visible. non-visible

Member m3 non-visible non-visible

476 Maria L. Barrén Estrada, et al.

2.3 Class Interface and Class Definition

MOOL provides single implementation inheritance and multiple interface inheri
tance. Classes are organized in a hierarchy with class object at the top. The clas;
hierarchy is build with the definition of new classes and the specialization of existin
ones. A class inherits from another class and implements one or more class imerfacesg
Classes that do not explicitly extend another class, implicitly inherit from object.

The class hierarchy does not organize the structure of a program; it is defined to aj.
low code reuse and incremental definition of classes. The class mechanism is not used
to support namespace management nor visibility control.

MOOL uses nominal subtyping, which means that classes define types and sub-.
classes define subtypes.

Class Interface

A class interface is a type declaration that provides a specification rather than an
implementation for its members. Class interface types are used to provide multiple
inheritance in MOOL. Any class interface implemented by a class is a supertype of
that class. A class interface declaration has the form:

class interface Identifier [TypeParameters)[Extendsinterfaces] InterfaceBodyDec

The class interface identifier must be unique in the module where it is defined. The

identifier may be followed by an optional list of type parameters to declare a param-
eterized interface type which are presented in section 2.4.

Example of of a class interface definition.

class interface IFigure (

void move (integer dx,dy);
void draw();

)

Class Dcfinition

MOOL contains a construct to define classes as extensible templates that encapsu-
late state and behavior. Classes in MOOL have three distinct roles: class definition,
class specialization, and object creation. A class may inherit from another class an.d n
may implement one or more class interfaces. A derived class can override an inherited

method but it must be explicitly declared. It can also shadow some members but it
must be explicitly declared to avoid unintentional shadowing of members.

Example of two class definitions using inheritance.

class Figure implements IFigure {
fields

Point center;
constructors

Figure () {center.x = 0; center.y =0;}

MOOL: an Object-Oriented Language with Generics and Modules 477

Figure (integer x, integer y) (
center.X = x; center.y ay;

methods

void move (integer dx, integer dy) {..}
void draw() (.. }

}

class Circle extends Figure implements ICircle (
fields
integer ratio;
constructors
Circle () { this(0,0,0) }
Circle (integer r) { this(0,0,r); }
Circle (integer x, y, r) { super(x,y);
this.ratio=r;}
methods
float area () { // implementation of area)
override void draw(){//new impl. of draw)

}

A class declaration provides a class type that can be used to declare object vari-
ables of that type. Classes are used to gencrate objects dynamically. All objects cre-
ated with a specific class have the same behavior at runtime and it cannot be modificd.
Objects are created applying the new operator to a class constructor. A class declara-
tion has the form:

class Identifier (TypeParameters) [SuperClass] Interfaces ClassBodyDec

TypeParameters is an optional part that specifies that the class is generic. Generic
classes are explained in detail in section 2.4. SuperClass is an optional part that speci-
fies the direct superclass of the class. /nterfaces specifies the list of interfaces that are
implemented by the class. ClassBodyDec contains the declarations of the members of
the class and the implementation of its constructors and methods. Classes have four
kinds of members: class variables, fields, constructors, and methods.

Class variables. Class variables are special members that are shared by all instances of
the class. They are allocated once for the lifetime of the program.

Fields. Fields are also called instance variables. Each object has a copy of the fields
declared in the class. A field declaration can hide an inherited field if it has the same
name and type but the declaration has to be preceded by the shadow access modifier.

Constructors. A constructor is a special function that has the same name as the class
and does not specify a retum type. A constructor is used in the creation of instances of
the class. A class can contain many constructors with different signatures. Construc-
tors must be part of a class declaration in a module interface if they are meant to be
available for users or specializers.

478 Maria L. Barron Estrada, et al.

Methods. Methods are functions defined inside a class that are always dynamicy
dispatched. They implement the behavior of objects. All methods of a class are avai]}i
able inside the module that contains the class definition. A class can contain twq or
more methods with the same name if their signatures are different. A method with, the
same name and signature than one inherited may override it, if it is annotated as over.
ride. A method can hide an inherited method with the same name and signature if jt i
annotated as shadow and not override. Both methods will be available using a ¢om.
plete qualified name. By default all methods can be overridden in subclasses.

Modifiers

Access modifier. There is one access modifier called protected. Any element of a
class interface annotated as protected can be used in derived classes. Protected mem-
bers are not available for clients.

Member modifier. There is one member modifier called shadow. A field or method
of a class can be annotated as shadow if it has the same name as one inherited. It is
used to hide the inherited member. Both members are available for access. The mem-
ber defined in the parent class can be accessed using a fully qualified name, casting
the object to its parent class, or using super. The new member can be accessed with
the dot notation.

Method modifier. There is one method modifier called override. A method anno-

lated as override, overrides an inherited method. The signature of the method must
follow the subtyping rules defined in section 6.2.5.

Subtyping for classes and class interfaces. The subtyping relationship between
classes is defined explicitly when a class is declared. A class that extends another class
is a subtype of the extended class. If a class doesn’t extend another class, it implicitly
extends object. A class is also a subtype of any class interface it implements.

Derived classes must follow the subtype rule for functions when a method is over-
ridden to ensure type safety.

MOOL allows changes of types in subclasses as follows: invariant — no type

changes are allowed for ficlds, covariant changes are allowed for result types of func-
tions, and contravariant changes for function arguments.

2.4 Generic Classes and Class Interface

Generics are abstractions over types. MOOL provides support for the definition of
generic types, and type variables.

In this section we present the definition of type variables, and generic types with dif-
ferent kinds of constraints, and how they can be used to create instances of them.

Type variables

A type variable is an identifier with the same features as other identifiers but it
stands for a type. Type variables are introduced in parameterized types to represent 2

MOOL: an Object-Oriented Language with Generics and Modules 479

type parameter. They are defined after the identifier of the type declaration and they
can be bounded to other types to constraint the type that can be used in instantiations.

Type constraints

Generic code can be defined for all the types available in the system is called un-
constrained genericity or for some types that hold some properties which is called
constrained genericity. A bound is declared using the implements keyword. Type
parameters may contain recursive bounds as in the example shown next.

Example of a parametcrized class with a recursively bound type parameter.

class interface IOrderable <T> {
integer compareTo (T elem);
)

class interface IOrderedList < T > {
T remove();
void insert (T elem);

class OrderList <T implements IOrderable <T>>
implements IordeList<T> (
// class implementation..

Generic types

In MOOL classes, class interfaces, and functions can be defined to be generic. A
generic type contains a list of type parameters with specific bounds. The bounds of the
type parameters restrict the types of the actual parameters when an instance of the
generic type wants to be created.

Generic functions. A generic function is a function that has a list of type parameters. It

is called in a similar way to that of a non-generic function, except for the type parame-
ters. A generic function named swap that receives a type parameter called T and threcm
formal parameters is shown next.

Example of of a generic function called swap.

void swap <T> (T [] a, integer i, integer j) ({
T temp = al[i];
a(i] = al3jl);
a[j] = temp

}

Generic classes. A generic class contains a list of type parameters enclosed in <>,
The type parameters can be bounded to other types.

480 Maria L. Barron Estrada, et al.

Example of of a generic class interface and its generic class.

class interface IList <T> {
T head ();

void cons (T elem);

)

class List < T > implements IList < T > (
fields

constructors
List<T> () (..}

methods
T head () { - }
void cons (T elem) (.. }

}

Generic class interfaces. A generic class interface contains a list of type parameters
enclosed in <>, The type parameters can be bounded to other types.

2.5 Declarations

A declaration introduces a name for a variable, a constant, a function, or a type that is
valid in a scope delimited by the block that contains it. Repeated names for variables

are not allowed in the same scope. There are four kinds of declarations: constants,
variables, functions, and types.

2.6 Statements

Statements execute actions. They are used to control the flow of execution of a pro-
gram. Some statements are simple and some others contain other statements as part of
their structure. Statements in MOOL are very similar to those in Java, C# and other
languages. In this section we present some of the statements supported in MOOL
without describing them exhaustively due to their similarity with other languages..

Assignment

An assignment statement has the form LHS = RHS. It requires checking type com-

patibility between the expression at the LHS and the value generated by the expression
at the RHS.

Function Call
A function call could be an expression or part of it if it returns a value.

MOOL: an Object-Oriented Language with Generics and Modules 481

Continue, return, and break

These statements are used to break the execution flow and continue the execution
with the next statement.

Block

A block statement is delimited by curly brackets and may contain local variable
declarations and a sequence of statements. It defines a scope where local variables
declared inside are valid.

For
The for statement contains a controlling-loop part and a block.

While

The while statement is a conditional loop that executes the block while the velue of
the espresion is frue.

If

The if statement contains an expression and a body, delimited by curly brackets.
The body contains a statement and an optional else part.

Switch

A switch statement contains an expression and a body. The body defines a set of
cases for which specific actions are defined and a default clause.

3 Translation

We are implementing a compiler for the MOOL language. The compiler produces
target code for the NET and JVM platforms.

The compiler reads the input file (MOOL source code) and then, in one step, exe-
cutes lexical, syntactic, and semantic analysis, and intermediate code generation (ab-
stract syntax tree). Another step traverses the abstract tree, producing the target code
(.net or bytecode) as the output. We also are implementing a preprocessor that takes a
MOOL program as an input and produces C# or Java code as an output (target code).
Both schemes allow us to test different types of programs using all the features of the
source and target languages.

4 Conclusions

We have presented MOOL, which is a new general-purpose programming language
where the roles of classes and modules are separated and generic programming is
supported.

MOOL enables object-oriented programming defining hierarchies of classes with
single implementation inheritance and multiple interface inheritance. MOOL enables

482 Maria L. Barrén Estrada., et al.

also the implementation of large programs providing modules - static units of encapsy-
lation, information hiding, and reuse - and module interfaces to describe theijr Inter-
connection. Generic programming is sustained by parameterized types.

Our language is similar to other programming languages in many ways, We
adopted a related Java and C# syntax which both descend from C. We can say tha
MOOL's module system is based on the module system of Modula-3 and the clasg
mechanism is a simpler version of Java and C# classes.

MOOL is not an extension of any other language despite of the similarities whit other
languages.

References

1. United States Dcpartment of Defense. Reference manual for the Ada programming Lan.
guage. GPO 008-000-00354-8, 1980.

. Standard ECMA-334. C# Language Specification [Online] http://www.ccma.ch December
2001.

3. Ken Amold and James Gosling. The Java™ Programming Language. Addison Wesley.
1998.

4. Barron-Estrada, M. L., MOOL: an Object-Oriented Language with Generics and Modules.
Ph.D. Dissertation. Florida Institute of Technology. Melboumne, Florida, USA, May 2004.

5. Kim Bruce. Foundations of Object-Oriented Languages Types and Scmantics. MIT-Press
2002.

6. Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objeccts Group, Gary T.
Leavens, and Benjamin Pierce. “On binary methods.” In Theory and Practice of Object Sys-
tems, 1(3): 221-242, 1996.

7. Kathleen Fisher and John Reppy. Foundations for MOBY classes. Technical Memorandum,
Bell Labs, Lucent Technologics, Murray Hill, NJ, February 1999.

8. Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Massachusetts. 1990.

9. Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Englewood Cliffs,
NJ. 1991.

10. Didier Rémy. Using, Understanding, and Unraveling the OCaml Language. In Gilles
Barthe, editor, Applied Semantics. Advanced Lectures. Volume 2395 of Lecture Notes in
Computer Science, pages 413-537. Springer Verlag, 2002.

11. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1991

12. Clements Szypersky. Import is not inheritance; why we need both: modules and classes. In
Proceedings of ECOOP ‘92, European Conference on Object-Oriented Programming.
Utrecht, The Netherlands, June/July 1992. Volume 615 of Lecture Notes in Computer Sci-
ence, pages 19-32, Springer-Verlag Berlin Heidelberg 1992.

